

 Introduction to Software

Configuration Management

US Department of Transportation
Federal Railroad Administration

Office of Safety
Washington, DC 20590

 8/8/2006 Version 1.1

FOREWORD

This document provides an introductory overview of the topic of software configuration
management (SCM). It is intended to provide FRA headquarters, field, and industry
personnel a basic understanding of the topic as well as general guidelines pertaining to
the Software Management Control Plan (SMCP) as specified in Title 49 Code of Federal
Regulations (CFR) § 236.18. It provides a general outline of the type of information that
FRA would expect to be found in an SMCP. The applicable Federal regulation requires
that railroads develop, adopt, and implement an SMCP appropriate to their needs and
consistent with their business case. The general guidelines in this document must be
supplemented by good judgment in handling individual situations.

Submit any questions or requests for clarifications regarding the content of this document
to the Staff Director, Signal and Train Control Division, Federal Railroad Administration,
RRS-13, Mail Stop 25, 1120 Vermont Avenue, NW, Washington, DC 20005, Fax (202)
493-6216.

 8/8/2006 Version 1.1

TABLE OF REVISIONS

Revision Date Change
1.0 5/12/2006 Initial Release
1.1 8/8/2006 Errata- Correction of

Numbering in Section 3.3
“Sample Plan Outline”

 8/8/2006 Version 1.1

TABLE OF CONTENTS

1. Introduction... 1

1.1. Purpose ... 1
1.2. Distribution ... 1
1.3. Definitions... 2
1.4. References ... 7
1.5. Acronyms and Abbreviations .. 7

2. Software Configuration Management .. 11
2.1. Software Configuration Identification .. 11
2.2. Software Configuration Baselines .. 12
2.3. Software Identifiers... 13
2.4. Software Configuration Control Activities ... 14
2.5. Software Configuration Status Accounting... 16
2.6. Configuration Verification and Audit ... 16
2.7. Organization & Functions .. 17

2.7.1. Configuration Identification. .. 18
2.7.2. Configuration Control. ... 19
2.7.3. Configuration Status Accounting (CSA). .. 19
2.7.4. Configuration Audits... 20

2.8. Configuration Control Boards.. 20
2.9. Baseline Change Process.. 22
2.10. Reports and Records ... 24

2.10.1. Change Request Records .. 26
2.10.2. Library(ies) Inventory Records... 26
2.10.3. Data Distribution Records.. 27
2.10.4. Release Records .. 27
2.10.5. Archive Records .. 27

2.11. Automated Tools for Software Configuration Management......................... 28
2.11.1. Basic Tool Set ... 28
2.11.2. Advanced Tool Set... 29
2.11.3. Online Tool Set ... 29
2.11.4. Integrated Tool Set.. 29
2.11.5. Tool Selection.. 30

3. Typical Software Management Control Plan Contents 30
3.1. Developing A Plan .. 31
3.2. Tailoring a Plan.. 32
3.3. Sample Plan Outline ... 33
3.4. Review Criteria ... 35
3.5. Recurring Maintenance Review.. 36

i
 9/26/2006 Version 1.1

1. Introduction
Title 49 CFR § 236.18, “Software Management Control Plan”, requires that railroads
develop and adopt within 6 months of the effective date of the rule, and fully implement
within 30 more months, a software management control plan (SMCP) for their processor-
based signal and train control systems. An SMCP is a plan designed to ensure that the
proper and correct version of software for each specific site and location on the railroad is
documented and maintained throughout the life-cycle of the system. The plan further
describes how the proper software configuration is to be identified and confirmed in the
event of replacement, modification, or disarrangement of any part of the system.

1.1. Purpose
This document is intended to introduce the topic of software configuration management
to personnel who may have never previously been involved with that subject or process.
It provides guidance on various considerations for developing, adopting, and
implementing an SMCP. It is intended for use or reference by FRA HQ and field
personnel, as well as railroad or vendor personnel.

FEDERAL REGULATION REQUIRES THAT RAILROADS SUBJECT TO
49 CFR SECTION 236.18 DEVELOP, ADOPT, AND IMPLEMENT A

SOFTWARE MANGEMENT CONTROL PLAN APPRORIATE TO THEIR
BUISNESS CASE.

Developing, adopting, and implementing an SMCP is the responsibility of the railroad.
The railroad, or a vendor for the railroad, may prepare it. FRA will not mandate any
particular format nor actually approve the plan. FRA will however monitor the railroads
development, adoption, and implementation of a plan, and will evaluate if the railroads
plan fulfills the requirements of § 236.18(c). FRA will then monitor the railroads on-
going compliance to their plan. Since the process and procedures are specified by the
railroads themselves in their SMCP to best support their business model while meeting
the objectives specified § 236.18(c), the expectation is that FRA will find that the
railroads will achieve and maintain compliance with those processes and procedures.
Situations of railroad non-compliance will be addressed as possible violations of
§ 236.18.

The Associate Administrator for Safety, or his or her designee, will have final authority
to decide the suitability of an SMCP to support the requirements of § 236.18(c). Each
SMCP will vary, depending on the individual railroad and property concerned. While the
following guidelines have been written taking this into account, they should NOT be
considered a substitute for good judgment, experience, and common sense.

1.2. Distribution
This document should be distributed to:

• All personnel in the Office of Safety Assurance and Compliance, Signal and
Train Control Division (S&TC), Washington headquarters;

1
 9/26/2006 Version 1.1

• Division Chiefs, Office of Safety Assurance and Compliance, Washington
headquarters;

• Regional Administrators, Deputy Regional Administrators, Regional S&TC
Supervisory Specialists, and Federal and State S&TC Inspectors;

• Office of Railroad Research and Development; and,
• And, it should be made available to interested railroad personnel, product

suppliers, and/or members of the general public.

1.3. Definitions

The terms and definitions listed below are compiled as an aid to understanding and
applying the SCM principles and processes used to manage software development,
testing, and maintenance efforts.

a. ALLOCATED BASELINE (ABL) - The initially approved documentation that
describes an item's functional, interoperability, and interface characteristics that
are allocated from those of a system or a higher level configuration item, interface
requirements with interfacing configuration items, additional design constraints,
and the verification required to demonstrate the achievement of those specified
characteristics.

b. ALLOCATED CONFIGURATION DOCUMENTATION (ACD) - The
approved Allocated Baseline plus approved changes.

c. AS-BUILT - Defines the initial software, hardware, or system configuration as it
actually has been built.

d. AUDIT - An independent examination of a work product or set of work products
to assess compliance with specifications, standards, contractual agreements, or
criteria.

e. BASELINE - A configuration identification document or set of such documents
formally designated and fixed at a specific time during the configuration item’s
life-cycle. Baselines, plus approved changes from those baselines, constitute the
current configuration identification.

f. CHANGE REQUEST (CR) FORM - A vehicle used to report deficiencies or
enhancements generated against CIs or technical data; a document that requests a
correction or change to the baseline documentation and software.

g. COMPUTER SOFTWARE (or SOFTWARE) - A combination of associated
computer instructions and computer data definitions required to enable the
computer hardware to perform computational or control functions.

h. COMPUTER SOFTWARE CONFIGURATION ITEM (CSCI) - A
configuration item that is software.

2
 9/26/2006 Version 1.1

i. CONFIGURATION - The functional and physical characteristics of existing or
planned hardware, firmware, or software or a combination thereof, as set forth in
technical documentation and achieved in a product.

j. CONFIGURATION AUDIT - A formal examination of a CSCI. Two types of
configuration audits exist: the Functional Configuration Audit (FCA) and the
Physical Configuration Audit (PCA).

k. CONFIGURATION CONTROL - The systematic proposal, justification,
evaluation, coordination, and approval or disapproval of proposed changes, and
the implementation of all approved changes in the configuration of a CI after
establishment of the baseline(s) for the CI.

l. CONFIGURATION IDENTIFICATION - The selection of CIs; the
determination of the types of configuration documentation required for each CI;
the issuance of numbers and other identifiers affixed to the CIs and to the
technical documentation that defines the CI's configuration, including internal and
external interfaces; the release of CIs and their associated configuration
documentation; and the establishment of configuration baselines for CIs.

m. CONFIGURATION ITEM (CI) - An aggregation of hardware or software that
satisfies an end use function and is designated for separate configuration
management.

n. CONFIGURATION STATUS ACCOUNTING (CSA) - The recording and
reporting of information needed to manage CIs effectively, including:

(1) A record of the approved configuration documentation and identification
numbers.

(2) The status of proposed changes, deviations, and waivers to the
configuration.

(3) The implementation status of approved changes.

(4) The configuration of all units of the CI in the operational inventory.

o. DELIVERABLE - A system or component that is obligated contractually to a
customer or intended user.

p. DEVELOPMENTAL CONFIGURATION - The software and associated
technical documentation that define the evolving configuration of a CSCI during
development. It is under the development contractor's or procuring organization's
configuration control and describes the software design and implementation. The
Developmental Configuration may be stored on electronic media.

3
 9/26/2006 Version 1.1

q. DEVIATION - A specific written authorization to depart from a particular
requirement(s) of an item's current approved configuration documentation for a
specific number of units or a specified period of time.

r. ENGINEERING CHANGE PROPOSAL (ECP) - A proposed engineering
change and the documentation by which the change is described, justified, and
submitted to the for approval or disapproval.

s. FIRMWARE - The combination of a hardware device and computer instructions
or computer data that reside as read-only software on the hardware device. The
software cannot be readily modified under program control.

t. FUNCTIONAL BASELINE (FBL) - The initially approved documentation
describing a system's or item's functional, interoperability, and interface
characteristics and the verification required to demonstrate the achievement of
those specified characteristics.

u. FUNCTIONAL CONFIGURATION AUDIT (FCA) - The formal examination
of functional characteristics of a CI, prior to acceptance, to verify that the CI has
achieved the requirements specified in its functional and allocated configuration
documentation.

v. FUNCTIONAL CONFIGURATION DOCUMENTATION (FCD) - The
approved FBL plus approved change.

w. NONDEVELOPMENTAL SOFTWARE (NDS) - Deliverable software that is
not developed under the contract but is provided by the contractor, the procuring
organization, or a third party. NDS may be referred to as reusable software,
government-furnished software, or commercially available software, depending
on its source.

x. NOTICE OF REVISION (NOR) - A document used to define revisions to
drawings, associated lists, or other referenced documents which require revision
after ECP approval.

y. PHYSICAL CONFIGURATION AUDIT (PCA) - The formal examination of
the "as-built" configuration of a CI against its technical documentation to
establish or verify the CI's product baseline.

z. PRODUCT BASELINE (PBL) - The initially approved documentation
describing all of the necessary functional and physical characteristics of the CI
and the selected functional and physical characteristics designated for production
acceptance testing and tests necessary for support of the CI.

aa. PRODUCT CONFIGURATION DOCUMENTATION (PCD) - The approved
product baseline plus approved changes.

4
 9/26/2006 Version 1.1

bb. PROGRAM MANAGEMENT - The organization sponsoring the field activity
project office.

cc. PROJECT MANAGEMENT - The designated organization from the field
activity project office responsible for the overall management of specific projects.

dd. RELEASE - A configuration management action whereby a particular version of
software is made available for a specific purpose (e.g., released to test).

ee. REUSABLE SOFTWARE - Software developed in response to the requirements
for one application that can be used, in whole or in part, to satisfy the
requirements for another application.

ff. RESOURCES - The totality of computer hardware, software, personnel,
documentation, supplies, and services applied to a given effort.

gg. SOFTWARE - See Computer Software.

hh. SOFTWARE CONFIGURATION MANAGEMENT (SCM) - A discipline
that applies technical and administrative direction and surveillance to perform the
functions listed below.

(1) Identify and document the functional and physical characteristics of CSCIs.

(2) Control the changes to CSCIs and their related documentation.

(3) Record and report information needed to manage CSCIs effectively,
including the status of proposed changes and the implementation status of
approved changes.

(4) Audit the CSCIs to verify conformance to specifications, interface control
documents, and other contract requirements.

ii. SOFTWARE DEVELOPMENT LIBRARY (SDL) - A controlled collection of
software, documentation, and other intermediate and final software development
products, and associated tools and procedures used to facilitate the orderly
development and subsequent support of software. The SDL includes the
Developmental Configuration as part of its contents. The SDL provides storage
of and controlled access to software development products in human-readable
form, machine-readable form, or both. This library may also contain management
data pertinent to the software development project.

jj. SOFTWARE-RELATED GROUP - Project members responsible for
generating requirements, design, development, validation, verification,
documentation, maintenance, and logistics of software.

5
 9/26/2006 Version 1.1

kk. SOFTWARE SUPPORT - The sum of all activities that take place to ensure that
implemented and fielded software continues to fully support the operational
mission of the software.

ll. SOFTWARE UNIT - An element in the design of a software item; for example,
a major subdivision of a software item, a component of that subdivision, a class,
object, module, function, routine, or database. Software units may occur at
different levels of a hierarchy and may consist of other software units. Software
units in the design may or may not have a one-to-one relationship with the code
and data entities (routines, procedures, databases, data files, etc.) that implement
them or with the computer files containing those entities.

mm. SOFTWARE TEST ENVIRONMENT - A set of automated tools, firmware
devices, and hardware necessary to test software. The automated tools may
include but are not limited to test tools such as simulation software, code
analyzers, test case generators, path analyzers, etc., and may also include the tools
used in the software engineering environment.

nn. SPECIFICATION CHANGE NOTICE (SCN) - A document used to propose,
transmit, and record changes to a specification.

oo. TECHNICAL REVIEW - An activity by which the technical progress of a
project is assessed relative to its technical or contractual requirements. The
review is conducted at logical transition points in the development effort to
identify and correct problems resulting from the work completed thus far before
the problems can disrupt or delay the technical progress. The review provides a
method to determine that the development of a CSCI and its documentation, have
met contract requirements.

pp. VERSION - An identified and documented body of software. Modifications to a
version of software (resulting in a new version) require configuration
management actions, by the contractor, the procuring organization, or both.

qq. WAIVER - A written authorization to accept an item, which during manufacture,
or after having been submitted for inspection or acceptance, is found to depart
from specified requirements, but nevertheless is considered suitable for use "as is"
or after repair by an approved method.

6
 9/26/2006 Version 1.1

1.4. References

MIL-STD-498 Software Development and Documentation, 5
December 1994

MIL-STD-973 Configuration Management, 17 April 1992

MIL-M-38784C Military Specification - Manuals, Technical: General
Style and Format Requirements, 12 October 1990

NAVAIRINST 4130.1C Naval Air Systems Command Configuration
Management Policy, 31 January 1992

IEEE-STD-610-1990 Glossary of Software Engineering Terminology

IEEE STD 828-1990 IEEE Standard for Software Configuration
Management Plans

IEEE-STD-1042-1987 IEEE Guide to Software Configuration Management,

CMU/SEI-93-TR-25 Key Practices of the Capability Maturity Model,
Version 1.1, February 1993

1.5. Acronyms and Abbreviations

ABL Allocated Baseline

ACD Allocated Configuration Documentation

AM Acquisition Manager

CAD Computer-Aided Design

CALS Continuous Acquisition and Life-Cycle Support

CAM Computer-Aided Manufacturing

CCB Configuration Control Board

CDR Critical Design Review

CDRL Contract Data Requirements List

CI Configuration Item

CITIS Contractor Integrated Technical Information Service

7
 9/26/2006 Version 1.1

CM Configuration Management

CMU Carnegie Mellon University

COM Computer Operation Manual

COTS Commercial Off-The-Shelf

CPM Computer Programming Manuals

CSA Configuration Status Accounting

CSC Computer Software Component

CSCI Computer Software Configuration Item

CSU Computer Software Unit

DBDD Database Design Description

DID Data Item Description

DM Data Management

DoD Department of Defense

DTP Desktop Procedure

ECP Engineering Change Proposal

EM Engineering Master

FBL Functional Baseline

FCA Functional Configuration Audit

FCD Functional Configuration Documentation

FPC Functional and Physical Characteristics

FQT Functional Qualification Testing

FSM Firmware Support Manuals

HWCI Hardware Configuration Item

ICWG Interface Control Working Group

ID Identification

8
 9/26/2006 Version 1.1

IDD Interface Design Document

IRS Interface Requirements Specification

MCCR Mission Critical Computer Resources

NDS Non-Developmental Software

NOR Notice of Revision

OCD Operational Concept Description

OT&E Operational Testing and Evaluation

PBL Product Baseline

PCA Physical Configuration Audit

PCD Product Configuration Documentation

PDR Preliminary Design Review

PM Program Manager

QA Quality Assurance

SCCB Software Configuration Control Board

SCM Software Configuration Management

SCMP Software Configuration Management Plan

SCN Specification Change Notice

SCOM Software Center Operator Manual

SCP Software Change Proposal

SCR Software Change Request

SCRB Software Change Review Board

SDD Software Design Document

SDF Software Development File

SDL Software Development Library

SDP Software Development Plan

9
 9/26/2006 Version 1.1

SDR System Design Review

SEI Software Engineering Institute

SEP Software Enhancement Proposal

SIOM Software Input/Output Manual

SIP Software Installation Plan

SPS Software Product Specification

SQA Software Quality Assurance

SRR Software Requirements Review

SRS Software Requirements Specification

SSA Software Support Activity

SSDD System/Segment Design Document

SSR Software Specification Review

SSS System/Subsystem Specification

STD Standard

STP Software Test Plan

STR Software Test Report

STR Form System Trouble Report Form

STrP Software Transition Plan

SUM Software User's Manual

SVD Software Version Description

TRR Test Readiness Review

V&V Verification and Validation

VDD Version Description Document

10
 9/26/2006 Version 1.1

2. Software Configuration Management

Software Configuration Management (SCM) is defined as a process for establishing and
maintaining consistency of a software product’s performance, and functional and
physical attributes with its requirements, design, and operational information throughout
its life. The SCM process is embodied in rules, procedures, techniques, methodology, and
resources to assure that:

• The configurations of the system and/or item (its attributes) are documented.
• Changes made to the item in the course of development, production, and

operation, are beneficial and are effected without adverse consequences.
• Changes are managed until incorporated in all items affected.

The objectives of SCM are summarized as follows:

C Ensure the orderly release and implementation of new/revised software and

related documentation.

C Implement only approved changes to both new and existing software.

C Verify that software changes comply with approved specifications.

C Reflect changes and updates in project documentation.

C Provide visibility of changes to project management.

C Evaluate and communicate the impact of changes.

C Prevent unauthorized changes from being made.

2.1. Software Configuration Identification
Software Configuration Identification (SCI) incrementally establishes and maintains the
definitive current basis for control and status accounting of a system and its computer
software configuration items (CSCIs) throughout their life-cycle (development,
production, deployment, and operational support, disposal). Effective SCI is a
prerequisite for the other SCM activities (configuration control, status accounting, audit),
which all use the products of configuration identification. If CSCIs and their associated
configuration documentation are not properly identified, it is impossible to control the
changes to the items' configuration, to establish accurate records and reports, or to
validate the configuration through audit. Inaccurate or incomplete configuration
documentation may result in defective products, schedule delays, and higher maintenance
costs after delivery. Good configuration control procedures assure the continuous
integrity of the configuration identification. The configuration identification process
includes:

• Selecting configuration items;
• Determining the types of configuration documentation required;
• Determining the appropriate configuration control;

11
 9/26/2006 Version 1.1

• Issuing identifiers for the CSCIs;
• Maintaining the configuration identification of CSCIs;
• Releasing configuration documentation; and,
• Establishing configuration baselines for the configuration control.

There is little consistency in item identification practices among COTS producers, and
often little consistency between two products provided by the same supplier. This,
obviously, makes identification inspection much more difficult. Software licenses,
upgrade tapes, and configuration files are difficult to manage because of this lack of
consistency between vendors. If sparing is to be done by other than the COTS supplier, it
can be a complex issue. Nonetheless, the railroad can effectively deal with these
problems. Remedies include auxiliary identifiers and decals applied at the time of
incoming inspection for inventory control, serialization, configuration control, and
accounting.

2.2. Software Configuration Baselines
The concept of baselines is central to an effective SCM program; it is however, not a
unique SCM concept. The idea of using a known and defined point of reference is
commonplace and is central to an effective management process. The essential idea of
baselines is that in order to reach a destination, it is necessary to know your starting point.
In order to plan for, approve, or implement a configuration change, it is necessary to have
a definition of the current configuration that is to be changed. In configuration
management, a configuration baseline is a fixed reference configuration established by
defining and recording the approved configuration documentation for a CSCI at a
specified time. Configuration baselines represent:

• Snapshots which capture the configuration or partial configuration of a CSCI at
specific points in time;

• Commitment points representing approval of a CSCI at a particular milestones in
its development;

• Control points that serve to focus management attention.

The following are typical configuration baselines that are established during the life-cycle
of a software project.

 Functional Baseline - Established by the acceptance or approval of the software or

system specification. This baseline typically corresponds to the completion of the
software requirement review.

 Allocated Baseline - Established by approval of the software requirements

specification. This baseline typically corresponds to the completion of the software
specification review.

 Developmental Baseline - Established by the approval of the technical documentation

that defines the functional and detailed design (including documentation of interfaces
and databases for the computer software). Normally, this baseline corresponds to the
time frame spanning the preliminary design review and the critical design review.

12
 9/26/2006 Version 1.1

 Product Baseline - Established by approval of the product specification following

completion of the last formal functional configuration audit (FCA).

2.3. Software Identifiers
Configuration identification consists of selecting the configuration items and recording
their functional and physical characteristics as set forth in technical documentation such
as specifications, drawings, and associated lists. The following are examples of items
managed in the SCM system:

• Management plans;
• Specifications (requirements, design);
• User documentation;
• Test plans, test design, case, and procedure specifications;
• Test data and test generation procedures;
• Support software used in development, even though not part of the delivered

software product;
• Data dictionaries and various cross-references;
• Source code (on machine-readable media);
• Executable code (the run-time system);
• Libraries;
• Databases (data that are processed and data that are part of a program);
• Maintenance documentation (e.g., listings, detail design descriptions).

Effective management of the development of a software product requires careful
definition of the configuration items. Changes to these items also need to be defined
since these changes, along with the project baselines, specify the evolution of the
software product. SCM includes all of the entities of the software product as well as their
various representations in documentation. The entities are not all subject to the same
SCM disciplines at the same time.

Support software is the class of software that may or may not be delivered with the
software product, but is necessary for designing, enhancing, or testing the changes made
during the life-cycle of the product. Support software may be user-furnished, developed
in-house, leased from a vendor, or purchased off-the-shelf. In SCM, the focus is on
describing the necessary controls used to manage support software. Developers and
maintainers need to ensure that the support software is available for use for as long as the
software product is in use. Whenever a production baseline is established, it is very
important to archive all environmental and support tools along with the production code.

Software tools used in development, especially compilers and middleware, should be
placed under configuration control so their identities and versions are included in the
baseline data about each release.

Consideration also needs to be given to the hierarchy of entities managed during the SCM
system. There are several different ways of structuring this hierarchy. One way is a
three-level hierarchy consisting of configuration items, components, and units. Another

13
 9/26/2006 Version 1.1

way of structuring the entities is in terms of the interrelationships between the software
being developed and the other software entities used during development and testing such
as support software, test software, and the operating system. A third method for
structuring entities is in terms of the intermediate products generated in the process of
building the software product, such as: modifiable entities (e.g., source code, document,
test data); compilation entities (e.g., compilers, support software); and configuration
items (e.g., different representations created in the process of producing deliverables).

An important aspect of configuration identification is the use of a formal naming
convention for each entity. This naming convention, which typically uses a combination
of mnemonic labels and version numbers, should be applied to all components of a
configuration item. In establishing the naming convention, consideration should be given
to system constraints such as name length or composition. Consistency in the application
of this identification scheme is critical to accurate tracking of the software engineering
process

For each CSCI, the software identifier consists of a name or other identifier and a version
identifier, assigned by the developing contractor. The identifiers relate the software to its
associated configuration documentation, revision, and release date. The software and
version identifiers are embedded within the source code, and are marked on media
containing the software. A method is typically employed to display the identifier and
version to the user of the software upon command. Firmware identification is labeled on
the device or embedded in the firmware, or if the device is too small, on the next higher
assembly. Firmware identification includes the top-level document/drawing that defines
how these components fit together for the firmware assembly.

Each accountable copy of a software product (e.g., source code tape), with the exception
of the EM and listings, is normally assigned a unique copy number both externally and
embedded within the software. For software products that require more than one unit of
physical storage per copy, a volume number is assigned to each unit of storage both
externally and embedded on the software.

2.4. Software Configuration Control Activities
Software Configuration Control (SCC) is perhaps the most visible element of SCM. It is
the process used to manage preparation, justification, evaluation, coordination,
disposition, and implementation of changes and deviations to effected CSCIs and base
lined configuration documentation. The primary objective of configuration control is to
establish and maintain a systematic change management process that regulates life-cycle
costs, and:

• Allows optimum design and development latitude with the appropriate degree,
and depth of configuration change control procedures during the life-cycle of a
CSCI.

• Provides efficient processing and implementation of configuration changes that
maintain or enhance operational readiness, supportability, interchangeability and
interoperability.

14
 9/26/2006 Version 1.1

• Ensures complete, accurate, and timely changes to configuration baseline
maintained under appropriate configuration control authority.

• Eliminates unnecessary change proliferation.

The span of configuration control begins once the first configuration document is
approved and baselined. This normally occurs when the configuration baseline is
established for the CSCI’s. At that point change management procedures are employed
to systematically evaluate each proposed engineering change or requested deviation to
the baseline, to assess the total change impact (including costs) through coordination with
affected functional activities, to disposition the change or deviation and provide timely
approval or disapproval, and to assure timely implementation of approved changes.
Configuration control is an essential discipline throughout the program life-cycle.

Through the configuration control process, the full impact of proposed engineering
changes and deviations is identified and accounted for in their implementation. The
configuration control process ranges from less formal processes to a very disciplined and
formal process. The configuration control process is employed to make sure all
personnel communicate the correct version of CSCI to be used. In addition, the process
makes affected parties aware that a change is being developed and enables them to
provide pertinent input.

When managing COTS items, performance specifications (performance baseline) are the
key point of control. In fact, they are the only legitimate basis for configuration control
that the railroad can use. The railroad does not have rights to the design data of a COTS
supplier, and cannot directly change it. The railroad may request the supplier to make a
change to its product, but does not have the ability to perform that change if the supplier
is not in agreement. Selection of a COTS item is based in part on life-cycle cost
considerations; the railroad should be cautious about obviating the cost benefit by
attempting to over-control the supplier. The railroad also can choose not to use the
supplier’s product. The supplier has complete configuration control over the COTS
product. The supplier may offer changes (improvements, added features) that are
optional (perhaps at extra cost) at any time. On the other hand, the supplier may make
configuration changes to the product for competitive reasons without any knowledge or
compliance by the integrator.

COTS suppliers are also subject to unannounced changes by their own suppliers, which
may in turn result in changes to the COTS product design. These supplier initiated
changes often improve the product, but are not always made with appropriate
modification of technical data or in concert with programmed change activity of the
ultimate end user. Considering the nature of the respective end items, the supplier’s
standard practices, and the competitive environment, requirements for configuration
control will vary somewhat from supplier to supplier. Wherever possible, railroad to
COTS supplier configuration control requirements should include the following as a
minimum:

• Advance notification of software changes that may impact the baseline;
• Advance notification of pending obsolescence;
• Advance notification of changes to versions and releases.

15
 9/26/2006 Version 1.1

The railroad can be the recipient of short-term notice of changes/obsolescence, and may
be forced into a reactive mode. Without direct control of the product evolution, the
railroad must compensate by being aware of pending changes as early as possible and
performing change impact analyses that assess alternate solutions to determine what
action is in their best interests. The impact is minimized by anticipating the likely level
of change activity that will occur, including redesign efforts to compensate for unplanned
COTS iterations.

2.5. Software Configuration Status Accounting
Software Configuration Status Accounting (SCSA) is the process of creating and
organizing the knowledge base necessary for the performance of software configuration
management. In addition to facilitating SCM, the purpose of SCSA is to provide a highly
reliable source of configuration information to support all software development,
maintenance, logistic support, modification, and maintenance. It is constrained only by
contractual and business provisions that establish the program life-cycle phase, tasks to
be performed, and the railroad organization (or contractor) tasked to perform them. In
addition to the use of automated configuration management tools, the process is aided or
facilitated by the documented CM processes and open communications between all
personnel involved in handling the software. The outputs from this activity provide
visibility into the CSCI, its status, and its configuration information at all locations.
SCSA also include “metrics” developed from the information collected in the SCSA
system and “management prompts” resulting from analysis of the software configuration
management database.

2.6. Configuration Verification and Audit
The configuration verification and audit process includes:

• Configuration verification of the initial configuration of a CSCI, and the
incorporation of approved engineering changes, to assure that the CSCI meets its
required performance and to documented configuration.

• Configuration audit of configuration verification records and physical product, to
validate that a CSCI has achieved its performance requirements and matches the
configuration documentation for the system/CI being audited, is consistent with
the product meeting the requirements.

The common objective is to establish a high level of confidence in the configuration
documentation used as the basis for configuration control and support of the product
throughout its life-cycle. Configuration verification is a process that is common to
configuration management, and quality assurance. It is the means by which the railroad
verifies the actual installation of the CSCI’s configuration and establishes the as-built
configuration. Configuration verification should be an imbedded function of the process
for creating and modifying the CSCI at each location. Successful completion of
verification and audit activities results in verified CSCIs and a documentation set that
may be confidently considered a product baseline. It also results in a validated process to
maintain the continuing consistency of product to the baseline. Configuration
verification is an on-going process. The more confidence in a contractor’s configuration

16
 9/26/2006 Version 1.1

verification process, the easier the configuration audit process becomes. The reward for
effective release, baselining, and configuration/change verification is delivery of a known
configuration that is consistent with the documentation and that meets its performance
requirements. These are precisely the attributes needed to satisfy the ISO-9000 series
requirements for design verification and design validation as well as the ISO-10007
requirement for configuration audit.

The dictionary definition of the word “audit” as a final accounting gives some insight into
the value of conducting configuration audits. As has been discussed earlier,
configuration management is used to define and control the configuration baselines for
the CSCIs and the system. In general, when the CSCIs are baselined, an audit is done to
ascertain that the baseline information is an accurate representation of the field
installation. The operation and life-cycle support of the CSCI is based on this
documentation. To fail to assure its accuracy can complicate future logistics support of
the CSCI, as well as result in violations of Federal regulations for non-compliance with
the SMCP. Configuration audits provide the framework, and the detailed requirements,
for verifying that the field deployment successfully matches the configuration.

There are two general categories of audits - Functional Configuration Audit (FCA) and
Physical Configuration Audit (PCA.) FCAs are usually conducted after a major change
or a significant number of minor changes have occurred, or before the establishment of
the product baseline. The FCA records differences between the SRS and the CSCI under
audit. PCAs ensure that the as-built configuration is accurately reflected by the released
documentation to establish the product baseline. The released engineering
documentation and quality control records are verified to make sure the as-built or as-
coded configuration is reflected by this documentation. PCAs are usually conducted
concurrently with FCAs, or immediately following an FCA.

2.7. Organization & Functions
The SCM organization will vary depending upon the scope and complexity of the system.
SCM interfaces with the functions listed below to control software configuration and
release activities. Depending on the size of the organization, the functional groups
defined below may be combined (e.g., the Software Systems Engineering Group and the
Software Design and Development Group may be one group known as software
development.

a. Program Management - Responsible for and has the authority to ensure complete
fulfillment of all program requirements. The Program Manager has the overall
responsibility for acquisition, funding, and transitioning of the project.

b. Project Management - Responsible for the technical aspects of the project. The
Project Manager has the responsibility for local funding, allocations, scheduling,
tasking, and reporting to program management.

c. Software Systems Engineering - Responsible for systems design (and associated
documentation), overview, and guidance; detailed design and coding; test plans,
procedures, and reports; software unit testing; and, preliminary CSCI testing.

17
 9/26/2006 Version 1.1

d. Software Design and Development - Responsible for software design (and
associated documentation), overview, and guidance; detailed design and coding;
test plans, procedures, and reports; software unit testing; and, preliminary CSCI
testing.

e. Software Test - Responsible for the conduct of software testing, including
preparation of test plan, description, procedures, and reports. The Software Test
Group ensures that the correct configuration is undergoing test and incorporates
approved changes into released test documentation based on change request
baselining data from SCM. The Software Test Group confirms verification of
change request corrective measures prior to change request closure. SCM
identifies all change requests included in an Engineering Master (EM) that is to be
tested. Test personnel then provide SCM a copy of the test report.

f. Software Quality Assurance (SQA) - Responsible for auditing the software
development activities and products (FCA and PCA) and certifying of SCM
compliance with this plan and DTPs.

g. System Test - Responsible for administering the verification and validation
(V&V) testing prior to release of the software. The System Test Group is a
separate organization from the Software Development Group (i.e., the Software
Systems Engineering Group and the Software Design and Development Group).

h. Logistics - Responsible for ensuring that changes made to a system are
supportable. SCM provides CSCI and associated technical data for logistics
evaluation.

i. Data Management (DM) - Responsible for the receipt, distribution, and tracking
of technical data associated with the project.

SCM is responsible for maintaining configuration control over software developmental
configurations and baselines and for processing changes to the software configuration.
SCM functions include Software Development Library (SDL) operation, software
product release coordination, and change request processing and tracking.

The responsibilities of each SCM function are listed in the paragraphs below.

2.7.1. Configuration Identification.

a. Establish methods and procedures for unique identification of CSCIs.

b. Establish and maintain functional, allocated, and product baselines and the
developmental configuration (identify, document, archive, and track changes to
system releases).

c. Establish and follow release procedures to obtain product baselines for new
version releases.

18
 9/26/2006 Version 1.1

d. Coordinate assignment of identifying numbers for CSCIs and documents.

e. Provide documentation that reflects the release software package.

f. Coordinate release of software and associated documentation to release
organizations.

g. Maintain records and prepare reports on release coordination activities.

2.7.2. Configuration Control.

a. Serve as a member of the Software Configuration Control Board (SCCB). SCM
is responsible for preparing and distributing the meeting agenda and minutes and
for recording action items and their resolution.

b. Establish and document configuration change control procedures.

c. Establish and follow configuration controls for software and documentation.

d. Place contents of baseline and developmental configurations under configuration
control in the SDL.

e. Generate executable load modules from controlled source code.

f. Ensure that the contents of the SDL are changed by SCM personnel and only
upon receipt of the appropriate paper work signed by the SCM manager.

g. Prepare and maintain master(s) of the currently active version of each CI until
superseded by a new version. Retain superseded versions of the master(s) in the
SDL archive files.

h. Maintain records and prepare reports on SDL activities and software products.

i. Perform non-technical check of software documentation.

j. Interface with Software Change Review Board (SCRB) chairperson to schedule
SCRB meetings, prepare SCRB agendas, and record SCRB meeting minutes.

2.7.3. Configuration Status Accounting (CSA).

a. Provide CSA recording and reporting.

b. Maintain accounting of software changes by tracking change requests, ensuring
traceability to a formal change proposal (i.e., ECP) from initiation through
resolution and disposition.

c. Prepare status reports on change requests, formal change proposals (i.e., ECPs),
and changes.

19
 9/26/2006 Version 1.1

2.7.4. Configuration Audits.

a. Support requests for audit and certification of software systems by SQA or the
independent auditor.

b. Perform reviews of SCM activities and products.

c. Review and update SCM documentation as required to ensure that current
applicability is maintained.

2.8. Configuration Control Boards
Configuration Control Boards (CCBs) enable the implementation of change controls at
optimum levels of authority and scope. CCBs can exist in a hierarchical fashion (for
example, at the program, system design, and program product level), or one board may
have authority over all levels of the change process. In most organizations, the CCB is
composed of senior level managers. They include representatives from the major
software, hardware, test, engineering, and support organizations as defined in the SCM
Plan. The purpose of the CCB is to control major issues such as schedule, function, and
the configuration of the system as a whole.

The more technical issues that do not relate to issues of performance, cost, and schedule
are often assigned to a Software Configuration Control Board (SCCB). The SCCB
discusses issues related to specific schedules for partial functions, interim delivery dates,
common data structures, design changes, and the like. This is the place for decision-
making concerning the items that must be coordinated across configuration items, but
they do not require the attention of high-level management. The SCCB members should
be technically well versed in the details of their area, while the CCB members are more
concerned with broad management issues facing the project as a whole and with
customer issues.

Depending on the size and nature of the software project, the SCCB may consist of a
single librarian, multiple librarians, or include many SCCBs, each with a different
functional responsibility for ensuring that changes are implemented and tested according
to standard procedures and that hardware/software interfaces and interfaces between
software modules are not violated. The SCCB also focuses on overall project
management responsibility for ensuring that design or requirements specifications are not
violated and that software changes are implemented according to cost and schedule
constraints. The size and structure of SCCBs normally change over the life-cycle of the
software.

The Software Change Review Board (SCRB) considers the recommendations of the
project’s SCCB for final approval or disapproval of proposed engineering changes to a
CSCI's current approved configuration and its documentation. The board also approves
or disapproves proposed waivers and deviations. The SCRB is responsible for evaluating
and approving or disapproving proposed software changes. The evaluation of proposed
changes must consider as a minimum such factors as documentation, equipment
interfaces, training equipment, implementation costs, and performance requirements.

20
 9/26/2006 Version 1.1

Proposed changes submitted for SCRB action must be complete with respect to technical
requirements, justification, cost information, logistic requirements, interface
requirements, retrofit requirements, and other applicable information. When a proposed
change affects any system or item under the cognizance of another SCRB, joint SCRB
meetings are held as required.

The SCCB supports the Project Manager and is composed of technical and administrative
representatives who recommend approval or disapproval of proposed engineering
changes to a CSCI's current approved configuration and its documentation. The board
also recommends approval or disapproval of proposed waivers and deviations from a
CSCI's current approved configuration and its documentation. Issues that the project’s
SCCB is unable to resolve or that involve a change in scheduling or fiscal costs are
initially addressed by the SCCB and forwarded to the program’s SCRB for final approval
or disapproval and recommendations.

The SCCB has authority for managing the project's software through the performance of
the functions listed below.

a. Authorize establishment of software baselines and identification of CSCIs.

b. Represent interests of project management and all groups who may be affected by
software changes to the baselines.

c. Assign, review, and provide for disposition of action items.

d. Provide required staff coordination on all proposed or reviewed changes or
modifications.

e. Serve as a source for the coordination of software technical expertise for the
project.

f. Determine or review the availability of resources required to complete the
proposed change or modification, assess the impact of the proposed change upon
the system, examine cost considerations, and determine the impact of the change
on development and test schedules.

g. Monitor the design, production, and validation process for approved
modifications, and initiate, when required, the corrective actions necessary to
ensure design compatibility and integrity, cost-effectiveness, and conformance to
scheduled milestones.

h. Direct software change implementation on changes approved by the SCCB.

i. Exercise interface management support and control for project software.

21
 9/26/2006 Version 1.1

2.9. Baseline Change Process
Changes occur at all phases in the software life-cycle. Design or implementation changes
may be necessary if requirements change, or when deficiencies are identified in the
design or implementation approach to a stable requirement. Testing may uncover defects
that require changes in the code or the design and requirements. Changes must be made
to the right version of the code, testing must verify performance of the change and the
integrity of the remaining software, and all associated documentation must be updated to
be consistent with the final code.

A mechanism is needed to process change requests (e.g., discrepancies, failure reports,
requests for new features) from a variety of sources throughout the development process
and during operation and support of the software product. This mechanism should extend
to a definition of a process to track, evaluate, and implement change requests into a new
version and new release of the software. Generally, no single procedure can meet the
needs of all levels of change management and approval levels.

The minimum activities needed for processing changes include:

• Defining the information needed for approving the requested change.
• Identifying the review process and routing of information.
• Describing the control of the libraries used to process the change.
• Developing a procedure for implementing each change in the code, the

documentation, and the released software product.

The baseline change process is a continuous function that involves the preparation,
implementation, and distribution of CSCI and associated documentation changes. It
involves activity at both the project and program levels. Changes to a baseline
configuration are initiated through a change request process that involves the preparation
of a defined series of documents (change forms) whose status is determined by a
hierarchy of control boards. Change requests are used to report problems and propose
changes or enhancements to software or documentation. A change request must be
documented, submitted, reviewed, and approved prior to implementation. Change
requests against developmental baselines are resolved by the SCCB. Change requests
against established baselines require approval of the SCRB.

Configuration changes to established baselines are categorized as either Class I or Class
II. A Class I change would be required if any of the following were affected:

a. The functional, allocated, or product configuration documentation.

b. Complete schedules.

c. Any of the following contractual factors:

(1) Cost to including incentives and fees.

(2) Contract guarantees or warranties.

22
 9/26/2006 Version 1.1

(3) Contractual deliveries.

(4) Scheduled contract milestones.

All Class I changes should be processed via an ECP. All changes to CSCIs that do not
meet one or more of the Class I change requirements are identified as Class II changes.
Examples of Class II changes include the following:

a. Changes to correct editorial errors.

b. Additions to clarifying notes or diagrams.

c. Changes to hardware that do not affect any Class I factors.

Generally, the following change forms are used for control of software baselines:

a. Engineering Change Proposals (ECPs)

b. Specification Change Notices (SCNs)

c. Notices of Revisions (NORs)

d. Deviation and Waiver

The ECP is used to document all proposed changes to established baselines. The
completed ECP must include detailed descriptions, justifications, and costs for the
proposed change. The SCN is used to correct or update specifications. Proposed SCNs
are submitted with Class I ECPs and provide proposed text changes to applicable
specifications. The SCN identifies the document to be changed, the SCN number, its
status (proposed or approved), the related ECP, and other identifying data. The NOR is
primarily intended for use when the master drawing list and other documents comprising
the configuration identification are not held by the originator of the ECP. NORs permit
the ECP previewing or approving activity to direct the custodian of an applicable
document to make specific revisions in affected documents.

Changes for a CCB are always prioritized. Table 1 provides commonly used
prioritization scheme

23
 9/26/2006 Version 1.1

Table 1: EXPLANATION OF PRIORITIES.

PRIORITY APPLIES IF A PROBLEM COULD:

1 a. Prevent the accomplishment of an operational or mission essential
capability.

b. Jeopardizes safety, security, or other requirement designated
“critical”.

2 a. Adversely affect the accomplishment of an operational or mission
essential capability and no work-around solution is known.

b. Adversely affect technical, cost, or schedule risks to the project or to
life-cycle support of the system, and no work-around solution is known.

3 a. Adversely affect the accomplishment of an operational or mission
essential capability but a work-around solution is known.

b. Adversely affect technical, cost, or schedule risks to the project or to
the life-cycle support of the system, but a work-around solution is
known.

4 a. Result in user/operator inconvenience or annoyance but does not
affect a required operational or mission essential capability.

b. Result in inconvenience or annoyance for development or support
personnel, but does not prevent the accomplishment of those
responsibilities.

5 Result in any other affect.

2.10. Reports and Records
The techniques and methods used for implementing control and status reporting in SCM
generally center around the operation of software libraries. Software libraries are a
controlled collection of software and related documentation designed to aid in software
development, use, and maintenance. Software libraries provide the means for identifying
and labeling baselined entities, and for capturing and tracking the status of changes to
those entities.

Libraries have been historically composed of documentation on hard copy and software
on machine-readable media, but the trend is moving toward all information being created
and maintained on machine-readable media. This trend, which encourages the increased
use of automated tools, leads to higher productivity. The trend also means that the
libraries are a part of the software engineering working environment. The SCM functions
associated with the libraries have to become part of the software engineering
environment, making the process of configuration management more transparent to the
software developers and maintainers.

The number and kind of libraries will vary from project to project or organization to
organization, according to variations in the access rights and needs of their users, which
are directly related to levels of control. The items maintained in the libraries may vary in
physical form based on the level of technology of the software tools. When the

24
 9/26/2006 Version 1.1

management of the libraries is automated, the libraries that represent different levels of
control may be functionally (logically) different even though they are physically the
same. The insertion of entities and changes to entities in a controlled library should
produce an auditable authorization trail.

The names of libraries may vary, but fundamentally there are three kinds: dynamic,
controlled, and static. The dynamic library, sometimes called the programmer's library,
is a library used for holding newly created or modified software entities (units/modules or
data files and associated documentation). This is the library used by programmers in
developing code. It is freely accessible to the programmer responsible for that unit at any
time. It is the programmers' workspace and is usually controlled by the programmers.

The controlled library, sometimes called the master library, is a library used for managing
the current baseline(s) and for controlling changes made to them. This is the library
where the components and units of a configuration item that have been promoted for
integration are maintained. Programmers and others can freely make copies for use.
Changes to components or units in this library must be authorized by the responsible
authority (which could be a configuration control board or other body with delegated
authority).

The static library, sometimes called the software repository, is a library used to archive
various baselines released for general use. This is the library where the master copies
plus authorized copies of software configuration items that have been released for
operational use, are maintained. Copies of these masters may be made available to
requesting organizations.

SCM has the prime responsibility for managing, compiling, maintaining, and publishing
the detailed software CSA reports. These reports provide the status to management that
all changes between the software technical description and the software itself are being
accounted for on a one-to-one relationship. This status information, together with the
CSA reports maintained by the SCM organization, is an input for the final review for
product acceptance. Project management determines the frequency of distribution and
recipients of the CSA reports. These reports include the information listed below.

a. Identification of currently approved configuration documentation and
configuration identifiers associated with each CSCI.

b. Status of proposed change requests from initiation to implementation.

c. Results of configuration audits, and status and disposition of discrepancies.

d. Traceability of changes from baselined documentation of each CSCI.

e. Effectiveness and installation status of configuration changes to all CSCIs at all
locations.

25
 9/26/2006 Version 1.1

The above reports answer basic questions regarding the approved configuration (baseline)
and the implementation status of changes to the baseline. Requests for CSA reports
originating outside the project are directed for approval to Project Management, which
authorizes need-to-know access.

The records maintained by SCM contain detailed data that documents that the as-built
software conforms to its technical description and specified configuration. They include
the information listed below.

a. Approved technical documentation for each CSCI.

b. Status of proposed changes.

c. Implementation status of approved changes.

d. Status of software problems.

e. A record of change request status.

2.10.1. Change Request Records
The change request records contain a record of all change requests and related
information. It includes, but is not limited to, the data listed below.

a. Change request number.

b. Title.

c. Date.

d. Software product name or acronym.

e. Part number or revision in error.

f. Originator.

g. Change source (e.g., ECP), if applicable.

h. Current change request status.

i. Change request disposition.

2.10.2. Library(ies) Inventory Records
The library inventory records contains a record of each software product stored in the
library(ies). It includes, but is not limited to, the data listed below.

a. Product name.

b. Part or document number and revision.

c. Date of creation, last modification, and last access.

26
 9/26/2006 Version 1.1

d. "Master" or "Copy" designation.

e. Authorizing paperwork type and number.

f. Type of media.

g. Location.

h. Classification.

2.10.3. Data Distribution Records
The data distribution records contain a record of all data (e.g., documents and drawings)
distributed by the software organization through DM. The table includes, but is not
limited to, the information listed below.

a. Type and identification number of distribution request.

b. Date of submittal.

c. Media identification.

d. Reason for distribution.

e. Classification.

2.10.4. Release Records
The release records contain a record of all releases made by the software organization
(e.g., drawings, documents, software documents, tape). It includes, but is not limited to,
the information listed below.

a. Date of release.

b. Type of release.

c. Software product released.

d. Changes incorporated into the release.

e. Approval signatures.

f. Location of masters.

2.10.5. Archive Records
SCM maintains a record of all archived material. Archived material includes obsolete
material and data not required for current use and off-site stored backup data in case of
loss of on-line data.

27
 9/26/2006 Version 1.1

2.11. Automated Tools for Software Configuration Management
The SCM automated tools used for a project and described in the SCM Plan need to be
compatible with the software engineering environment in which the development or
maintenance is to occur. SCM tools offer a wide range of capabilities and choices have
to be made as to the tool set most useful for supporting the engineering and management
environment.

Configuration management of complex software may depend on ad hoc systems whose
effectiveness is based on close adherence to written procedures. Such systems, which
may be paper-based or electronic, require considerable effort to achieve the necessary
levels of integrity and traceability, particularly for team development projects. Software
tools designed for configuration management can simplify this process and provide better
access to the information required by the developer, project manager, or user.

Software tools for configuration management can provide a number of benefits over
paper-based systems, including:

• Increased reliability and repeatability of the development process through automation

of many mundane processes.
• Ability to track and manage changes within a user-defined process workflow.
• Enhanced productivity, by eliminating wasted effort and speeding up frequent

activities such as the build and support of concurrent development.
• A means to manage product variants.
• Real-time analysis of all development activities.
• Complete audit trails of both software and documentation.
• More effective team management.

The automated tools described in this section are classified into broad categories in terms
of the level of automation they provide to the project.

2.11.1. Basic Tool Set
The basic tool set is compatible with an environment that is relatively unsophisticated.
The tools control the information on hard copy regarding a program product. These tools
provide a capability that distinguishes between controlled and uncontrolled units or
components. The tools simplify and minimize the complexity, time, and methods needed
to generate a given baseline.

The basic tool set includes:
• Basic database management systems.
• Report generators.
• Means for maintaining separate dynamic and controlled libraries.
• File system for managing the check in and check out of units, for controlling

compilations, and capturing the resulting products.

28
 9/26/2006 Version 1.1

2.11.2. Advanced Tool Set
The advanced tool set provides a capability for an SCM group to perform more
efficiently on larger, more complex software engineering projects. These tools provide
an environment that has more computing resources available. It provides the means of
efficiently managing information about the units or components and associated data
items. It also has rudimentary capabilities for managing the configurations of the product
(building run-time programs from source code) and providing for more effective control
of the libraries.

The advanced tool set includes:
• Items in the basic tool set.
• Source code control programs that will maintain version and revision history.
• Tools for comparing programs for identifying (and helping verify) changes.
• Tools for building or generating executable code.
• A documentation system (word processing) to enter and maintain the specifications

and associated user documentation files.
• A system/software change request/authorization (SCR/SCA) tracking system that

makes requests for changes machine-readable.
• Capability to manage concurrent development efforts.

2.11.3. Online Tool Set
The online tool set requires an interactive programming environment that is available to
the project. It provides an organization with the minimal SCM capabilities needed to
support the typical interactive environment currently available in industry. These tools
also provide online access to the programming database and the resources necessary for
using the tools.

The online tool set includes:
• Generic tools of the advanced tool set integrated so they work from a common

database.
• An SCR/SCA tracking and control system that brings generation, review, and

approval of changes online.
• Report generators working online with the common database, and an SCR/SCA

tracking system that enables the SCM group to generate responses to online queries
of a general nature

2.11.4. Integrated Tool Set
The integrated tool set integrates the SCM functions with the software engineering
environment so that the SCM functions are transparent to the engineer. The software
engineer becomes aware of the SCM functions only when he/she attempts to perform a
function or operation that has not been authorized (for example, changing a controlled
entity when the engineer does not have the required level of authority or control).

An integrated tool set includes:
• Online SCM tools covering all functions.

29
 9/26/2006 Version 1.1

• An integrated engineering database with SCM commands built into the online
engineering commands commonly used in designing and developing programs (most
functions of CM are heavily used during design and development phases).

• The integration of the SCM commands with online management commands for
building and promoting units and components.

2.11.5. Tool Selection
SCM tools should be carefully selected to match working practices and ideology.
Selection of SCM tools should be based on the following features.

• Cross-platform support.
• Developer empowerment (librarian or other supervisory role optional).
• Match to existing work practices (task or life-cycle based).
• Tool integration (between components and other software engineering tools).
• Ease of installation and use.
• Code visibility outside tool (to support intranet technology).
• Supplier support before and after delivery.
• Market position of supplier and product.
• Overall cost.

3. Typical Software Management Control Plan Contents
The Software Management Control Plan (SMCP) defines all of the procedures,
organizational responsibilities, and tools to be used within the SCM process. As such, it
must either include well-developed, detailed procedures or refer to their locations in other
documents. A SMCP is not a one-size-fits-all document. Rather, it must be tailored to
meet the needs of the organization. It also is important to note that the size of the SMCP
should not be so large as to intimidate users. If the procedures are sizeable, they should
be broken out into their own documents to reduce cultural resistance.

Performing SCM for the sake of SCM becomes a cumbersome, time-consuming process,
which does not result in benefits. A concerted effort to tailor the process must be made.
If this is done, the following benefits can be obtained.

• The plan documents the SCM process and as such acts as the tool used to gain
project and management support for the process.

• The plan forces an organization to define and describe the process.
• The plan causes the organization to think about what it will do and how it will do

it.
• The plan serves as a contract vehicle (in some cases).

Planning for SCM is essential to its success. The routine clerical-type functions
associated with SCM are repetitious and can be automated fairly easily. The more
important disciplines of SCM, such as defining a scheme for identifying the configuration
items, components, and units; or the systematic review of changes before authorizing
their inclusion in a program, are activities that require engineering judgment. Relating
engineering judgment with management decisions, while also providing the necessary

30
 9/26/2006 Version 1.1

clerical support without slowing the decision-making process, is the critical role of SCM
planning. Effective SCM involves planning how all of these activities are to be
performed, and performing the activities in accordance with the plan.

The planning and application of SCM is very sensitive to the context of the project and
the organization being served. If SCM is applied as a corporate policy, it must be done in
such a way that the details of a particular SCM system are reexamined for each project
(or phase for very large projects). It must take into consideration the size, complexity,
and criticality of the software project being managed; and the number of individuals,
amount of personnel turnover, and organizational form and structure.

3.1. Developing A Plan

The Software Engineering Institute at Carnegie Mellon University identified 10 elements
to successfully implementing software configuration management. They are: planning,
process, culture, people, product, automation, management, the SCM plan, the SCM
system, and the SCM adoption strategy. These elements are:

1. Determining what issues need to be documented in the plan and resolving them
(Planning)

2. Specifying how to implement the plan (Process)
3. Picking a solution that matches the way the organization does business (Culture)
4. Identifying who is involved in implementing and executing the plan (People)
5. Determining what comes under SCM (Product)
6. Determining what tools will be used to help (Automation)
7. Getting buy-in and backing (Management)
8. Documenting decisions (SCM Plan)
9. Implementing (SCM System)
10. Bringing the system online and populating the data (SCM Adoption Strategy)

Of all of these, Carnegie Mellon found that actually writing the plan (Documenting
decisions) was the least difficult step in the whole process. It was the other 9 steps that
caused all of the problems. The difficult part was determining the answers for steps 1
through 6, obtaining management buy-in (step 7), and then executing steps 9 and 10.

First, recognize that the development of an effective SMCP is not a turnkey job that can
be completely handed over to a consultant. It is essential to have organizational staff
actively involved with, or leading the development of, the plan because organizational
staff has the best understanding of the system functionality and change control needs.
Developing a SMCP is not a mysterious, magical process. Rather, it simply requires
concerted effort and communication to ensure that the plan meets the needs of the
organization in question.

The best way is to start is with a standard, such as IEEE Std 828-1990, IEEE Standard for
Software Configuration Management Plans, American National Standards Institute, 1990.
or IEEE Std 1042-1987, IEEE Guide to Software Configuration Management, American

31
 9/26/2006 Version 1.1

National Standards Institute, 1987 as a template, and then customize that to the
organizations specific needs. That will then guide development of the various procedures
and processes. Doing the customization is by far the most difficult step in the process.
The organization must define and document those procedures that will work for their
organization.

The Plan is a Living Document – It Will Change Too. The plan will need to change to
reflect the changing environment. As an organization gains experience, this experience
will dictate changes to the plan. Experience will determine what works and what does
not work for a given situation. Clearly, the SMCP subsequently will change throughout
the system's life-cycle. For this reason, the SMCP is subject to change control and should
be treated as any other component of the SMCS.

In general, a sufficient plan must address at least the following six topics:

1. Introduction - Description of the plan's purpose, scope of application, key
terms, and references.

2. SCM Management (Who?) - Identifies the responsibilities and authorities for
accomplishing the planned activities.

3. SCM Activities (What?) - Identifies all activities to be performed as applying to
the project.

4. SCM Schedules (When?) - Identifies the required coordination of SCM
activities with the other activities in the project.

5. SCM Resources (How?) - Identifies tools and physical and human resources
required for execution of the plan.

6. SCM Plan Maintenance - Identifies how the plan will be kept current while in
effect.

3.2. Tailoring a Plan
SCM disciplines should be practiced as a part of every software engineering project. The
completeness and level of detail for the configuration management disciplines depend on
the size, complexity, and importance of the project.

The level of formality associated with SCM depends on the risks to be mitigated. Using
a broad definition of SCM as those processes capturing a logical snapshot of a dynamic
development process, the formality can range from very informal to fully controlled with
auditable processes. Software with minimal risks associated with loss of historical or
baseline information may have no formally defined process. For instance, the software
developer may decide which versions should be kept based on a personal risk assessment.
At the other end of the formality scale, large projects introduce processes to assure the
capture of a useful set of final and intermediate deliverables with rules for changes to the

32
 9/26/2006 Version 1.1

deliverables. As there is a cost to the implementation of formal procedures, it is
important to select processes that minimize risks proportioned to their costs.

The disciplines of SCM apply to the development of programmed logic, regardless of the
form of packaging used for the application. Whether software is released for general use
as programs (e.g., RAM or DRAM) or embedded in read-only memory (ROM), it is a
form of logic. Therefore, SCM disciplines can and should be extended to include
development of the software’s component parts (e.g., source code and executable code).

Firmware raises some special considerations for configuration management. While being
developed, the disciplines of SCM apply, but when made part of the hardware (e.g.,
burned into [EP]ROM or [EEP]ROM), the disciplines of hardware configuration
management apply. Testing may vary, but the SCM requirements are generally the same.
The packaging of [EP]ROM or [EEP]ROM versus RAM or DRAM code also introduces
and necessitates different identification procedures.

3.3. Sample Plan Outline

As an example, a fully developed SMCP outline follows:

1 Introduction
1.1 Purpose
1.2 Scope
1.3 Definitions and Abbreviations
1.3.1 Definitions
1.3.2 Abbreviations
1.4 Plan Implementation
1.4.1 Implementation Schedule
1.4.2 Required Resources
1.4.3 Implementation Risks
1.4.4 Cost Estimates
1.4.5 Change Procedures (and History)
1.5 References

2 Management Organization & Documentation
2.1 Organizational Unit and Interfaces
2.1.1 Operations Department
2.1.2 Signal/Communications Department
2.1.3 Mechanical Department
2.1.4 Information Technology Department
2.2 Activities and Organization Unit Responsibilities
2.2.1 Configuration Identification
2.2.2 Configuration Control
2.2.3 Configuration Status Accounting
2.2.4 Configuration Audits and Review
2.2.5 Configuration Control Board

33
 9/26/2006 Version 1.1

2.2.6 Interface Control
2.2.7 Quality Assurance
2.3 Software Configuration Management Documentation
2.3.1 Configuration Identification Documentation
2.3.2 Configuration Control Board Documentation
2.3.3 Configuration Status Accounting Documentation
2.3.4 Schedules and Reports for Reviews and Audits
2.3.5 Configuration Baseline Documentation
2.3.6 Interface Control Documentation
2.3.7 Quality Assurance Documentation
2.4 Configuration Management, Development, and Maintenance Tools
2.5 Other Applicable management Policies, Directives, and Procedures
2.5.1 Polices
2.5.2 Directives
2.5.3 Procedures

3 Software Configuration Management Activities
3.1 Configuration Identification Processes and Procedures
3.1.1 Required Documentation
3.1.2 Identification of Computer Software Configuration Items
3.1.3 Configuration Identification of Deployed System Baselines
3.1.4 Inspection and Receiving
3.2 Configuration Control
3.2.1 Reporting of Changes
3.2.2 Change Proposal Processing
3.2.3 Level of Authorities for Approvals
3.2.4 Configuration Control Board Procedures
3.3 Auditing
3.3.1 Verification Processes and Procedures
3.3.2 Validation Processes and Procedures
3.4 Interface Control Processes and Procedures
3.5 Quality Assurance Processes
3.5.1 CSCI QA
3.5.2 SCMP QA
3.6 Development and Maintenance Tools
3.6.1 Development
3.6.2 Operations and Maintenance
3.6.3 Configuration management

4 Training Requirements
4.1 Field Personnel
4.2 Office Personnel
4.3 Vendor/Subcontractor/Supplier
4.4 Configuration Management of Training

34
 9/26/2006 Version 1.1

5 Supplier/Vendor/Subcontractor
5.1 Railroad Subcontract/Vendor Management Organization and Interface
5.2 Required Reports
5.3 Activities and Responsibilities
5.3.1 Compliance with Railroad SCM Requirements
5.3.2 Railroad Intellectual Properties Agreements
5.3.3 Vendor Version Control and Reporting
5.3.4 Patch/Release/Version Upgrade Procedure
5.3.5 CCB Relationships
5.3.6 QA

6 Record Collection and Retention
6.1 Required Records
6.2 Retention Requirements
6.2.1 Manual
6.2.2 Electronic

3.4. Review Criteria
A well-written SMCP should be able to provide affirmative answers/explanation to each
of the following questions.

• Does the plan create procedures to ensure identification and control of all

configuration items and baselines, including necessary changes to those items?

• Does the plan identify appropriate tools or methods to support the configuration

system, including change control and methods of backup?

• Does the plan document procedures for review and authorized release of products

consistent with the level of testing applied?

• Does the plan develop a mechanism for coordinating the updating of software at all

customer locations?

• Does the plan create procedures for replication and subsequent verification and

product identification activities?

• When a configuration management software tool is employed, does the plan clearly

document the use of that tool?

• Does the plan develop a mechanism to support the labeling or other means of

identification of third-party supplied products including, where necessary, integration
into the configuration management system?

• Does the plan develop a mechanism to ensure that software, or designs produced or

modified externally to the organization (for example by a subcontractor), are fully
integrated into the configuration control process?

35
 9/26/2006 Version 1.1

• Does the plan determine how the software configuration management system will be

tailored to accommodate the size and complexity of the project?

If, after review of a SMCP document, the preceding questions cannot be affirmatively
answered/explained, then the plan does not adequately address the minimum
requirements of Title 49 CFR § 236.18.

3.5. Recurring Maintenance Review
Maintenance of the SMCP throughout the life-cycle of the various software products is
especially important as the disciplines of identification; configuration control, status
reporting, and release processing apply throughout the maintenance part of the life-cycle.
Differences may be expected in how change processing is managed, and these need to be
understood by all participants.

A review of the SMCP should be periodically performed to assess the effectiveness of the
approach and the extent to which configuration management procedures are being
followed by project staff. This enables adjustments to the SMCP to improve the staff’s
ability to follow the procedures and allows for more effective approaches to be
incorporated as they are developed.

36
 9/26/2006 Version 1.1

	Cover
	Foreword
	Table of Revisions
	Table of Contents
	1. Introduction
	1.1. Purpose
	1.2. Distribution
	1.3. Definitions
	1.4. References
	1.5. Acronyms and Abbreviations

	2. Software Configuration Management
	2.1. Software Configuration Identification
	2.2. Software Configuration Baselines
	2.3. Software Identifiers
	2.4. Software Configuration Control Activities
	2.5. Software Configuration Status Accounting
	2.6. Configuration Verification and Audit
	2.7. Organization & Functions
	2.7.1. Configuration Identification.
	2.7.2. Configuration Control.
	2.7.3. Configuration Status Accounting (CSA).
	2.7.4. Configuration Audits.

	2.8. Configuration Control Boards
	2.9. Baseline Change Process
	2.10. Reports and Records
	2.10.1. Change Request Records
	2.10.2. Library(ies) Inventory Records
	2.10.3. Data Distribution Records
	2.10.4. Release Records
	2.10.5. Archive Records

	2.11. Automated Tools for Software Configuration Management
	2.11.1. Basic Tool Set
	2.11.2. Advanced Tool Set
	2.11.3. Online Tool Set
	2.11.4. Integrated Tool Set
	2.11.5. Tool Selection

	3. Typical Software Management Control Plan Contents
	3.1. Developing A Plan
	3.2. Tailoring a Plan
	3.3. Sample Plan Outline
	3.4. Review Criteria
	3.5. Recurring Maintenance Review

